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Abstract

This grant supported r_search into quiet-flow supersonic wind-tunnels, between May

1990 and December 1994. Quiet-flow nozzles operate with laminar nozzle-wall

boundary layers, in order to provide low-disturbance flow for studies of laminar-

turbulent transition under conditions comparable to flight. Major accomplishments

include: (1) the design, fabrication, and performance-evaluation of a new kind of

quiet tunnel, a quiet-flow Ludwieg tube; (2) the integration of pre-existing codes

for nozzle design, 2D boundary-layer computation, and transltion-estimation into a

single user-friendly package for quiet-nozzle design; and (3) the design and prelimi-

nary evaluation of supersonic nozzles with square cross-section, as an alternative to

conventional quiet-flow nozzles. After a brief summary of (1), a description of (2)

is presented. Published work describing (3) is then summarized. The report con-

cludes with a description of recent results for the Tollmien-Schlichting and GSrtler

instability in one of the square nozzles previously analyzed.

1 The Purdue Quiet-Flow Ludwieg Tube

A quiet-flow Ludwieg tube has been designed, constructed, and tested at Purdue

over the past 5 years. This is the first low-cost quiet-flow facility constructed with

a design that has the potential to reach substantial quiet Reynolds numbers and

test-section sizes. It is also the first quiet-flow facility with good optical access

(except for the defunct JPL tunnel [9] and the small MSU facility [7]). The facility
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is currently in operation with a 3.8 by 4.3 inch Mach 4 test section that is quiet

to a length Reynolds number that exceeds 400,000. This Reynolds number already

allows testing of receptivity and roughness effects. More importantly, the way is now

open to development of substantially higher Reynolds number facilities with short

run-times, at low costs. Current plans call for the installation in the Purdue Ludwieg

tube of the obsolete first-generation nozzle blocks for the NASA Langley Mach 3.5

pilot tunnel. These blocks, which have a 6 by 10 inch exit, should allow achieving a

quiet length Reynolds number of 2.7 million at 30 psia stagnation pressure, according

to reference [4].

The design and construction of the facility is documented in references [13], [15],

and [16]. The test results were presented in reference [17], and have been accepted

for journal publication [14]. More recent results were presented in reference [19].

2 Integrated Software for Design of 2D and Ax-

isymmetric Quiet-Flow Supersonic Wind Tun-

nel Nozzles

At the commencement of this effort, it was expected that a new nozzle would have

to be designed and constructed for the Purdue Ludwieg tube. Although this has not

yet been required after all, considerable effort has been expended in developing an

integrated, easy to use quiet-nozzle design system from the several separate codes

that were originally in use for this purpose at Langley. The following section briefly

describes and documents this relatively user-friendly quiet-nozzle design software.

2.1 Method-of-Characteristics Nozzle-Design Code

The state of the art in the design of supersonic wind tunnel nozzles involves the use

of 2D or axisymmetric method-of-characteristics (MOC) codes for determining the

nozzle shapes that result in uniform exit flow. A good introductory description of

the basic problems is presented in sections 15-5 and 16-4 of reference [23]. Although

fully three-dimensional MOC codes exist, they would have to be iterated in order

to produce uniform flow at the nozzle exit, a basic requirement for wind tunnel

nozzles [12]. Thus, consideration is here restricted to flows derivable from 2D or

axisymmetric MOC solutions.

The Sivells wind-tunnel nozzle design code was selected for use in 1990. Unlike

the custom-modified code used by Chen for the Langley nozzle designs [21], it is

fairly well documented in reference [20], and the source code is available. Although

it is old FORTRAN-IV code, it is possible to follow much of the logic from the
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code itself. In addition, the Sivells code is capable of generating nozzles with the

radial-flow regions that are advantageous from a G6rtler stability viewpoint [5].

The manual for the code devotes 8 pages to the description of the input deck,

which allows for many different combinations of nozzle geometries. To simplify the

use of the code, a FORTRAN program was written to automatically generate the in-

put deck from the answers to a few simple questions that are answered interactively.

This program, SIVINPUT, which is appended, sets most of the parameters in the

code. The internal documentation contained hi SIVINPUT in the form of comments

will have to suffice for documentation at the present time.

Numerous modifications have been made to the Sivells code over the past 4

years, although most of these are fairly minorl The mainframe-style input/output

structure was modified to a friendlier form, in which the input and output files

are automatically generated by adding 3 character suffixes to a user-supplied 8

character rootname. If the rootname is here called username, then SIVINPUT gen-

erates username, inp which is then read by SIVELLS. A subroutine (WKTOBL; see

appendix) was added to write selected output in a form suitable for ready transla-

tion into Harris code input (file username.bl). The WKTOBL subroutine also writes

data for the conditions along the centerline of the sidewalls to the file username, cl,

and integrates the tracks of mach lines originating on the sidewall, for determining

the width of quiet-flow regions in 2D nozzles. The WKTOBL subroutine also writes

out the derivatives of the wall contour, as generated in the MOC algorithm, in or-

der to obtain accurate values of the local wall curvature for G6rtler computations.

Finally, WKTOBL was also modified to call the Hopkins-Hill subroutines developed

and documented in reference [2], in order to determine the shape of the bleed slot

lip upstream of the throat. Although this means that a different algorithm is used

to determine the transonic throat shape upstream and downstream of the throat,

the two algorithms seem to merge smoothly and accurately into one another. This

agreement is not surprising, since both the upstream and downstream transonic flow

algorithms are based on near-sonic perturbation theory, so they must agree very well

near the throat where the sound speed is nearly sonic, at least for large radius of

curvature wind-tunnel-type throats. Error trapping code was inserted to address

problems with user-friendliness, when these were encountered. The common block

references were made consistent to reduce compiler difficulties. The array sizes al-

lowed by the code were also increased, to improve accuracy. Minor changes were

also made to SIVELLS to allow restructuring it to structured Fortran-77 using the

commercial software package FOK-STRUCT (Cobalt Blue, Inc., Roswell, Ga.).

The only significant change to the Sivells internal algorithm was made when it

was determined that the code would not generate internal streamlines downstream

of the radial flow region, for the nozzle shapes desired (the original code will only

generate internal streamlines for the special case where ETAD = 60.) This bug was



fixed by duplicating lines Ill and 112 of the AXIAL subroutine above line 43 in

AXIAL.

Since a nozzle with 10 internal streamlines for square nozzle designs can be

generated on a 66MHz 486-class PC in less than 3 minutes, the system is very

practical for design work.

2.2 Sivells to Harris Interface Code

The program MAKEBLIN was written to take the output file from the Sivells code,

username.bl, and generate an input file for the Harris code, username.bli. The

Reynolds number scaling information required is read in from the auxiliary file

username, re, which contains the throat radius, total pressure and temperature, and

so on, and must be hand-generated. It uses various defaults to generate a complete

input deck for the Harris code, including the streamwise grid-point locations. It is

also capable of generating Harris code input for other inviscid-flow generators. The

code is heavily commented, as can be seen from the listing in the appendix. The

highly automatic generation of the complex input files required for the Harris code

make design studies relatively easy to carry out. This code runs in seconds on the

66MHz PC.

2.3 Harris Boundary-Layer Code

The Harris boundary-layer code is documented with a good user's manual [8] and is

written in structured Fortran. It is a good and standard finite difference code with

which to compute 2D and axisymmetric boundary layers. For quiet-nozzle work, the

boundary layers are assumed to be laminar (since the nozzle-wall boundary layer is

only of interest up to the point where it becomes transitional). Thus, the turbulence

model incorporated in the code is not an issue.

Again, minor modifications were made to this code, to ease input/output. The

input/output files are again automatically generated by appending suffixes to the

user-supplied rootname (e.g., username). The input data is read from username .bli,

and the standard output is written to the file usarname.blo. In addition, the

surface conditions written using IPRT commands are written in tabular form to

username.prt, and the profiles written using IPRO commands are written in tab-

ular form to usarnama.pro. This allows rapid plotting of selected surface condi-

tions, and eases translation of the output into a form suitable for the transition-

estimation code. In particular, selected derivatives of profile quantities are written

to username.pro, as generated in the program, so that they can be passed to the

transition-estimation program with greater accuracy. Error-trapping code was also
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added,as neededto easeuse. The modified codehasbeenusedin required under-
graduatecourseprojects with goodsuccess.

This code also runs in a few minutes on the 66 MHz PC, soagain the systemis
convenientfor designpurposes.

2.4 Harris to e**MALIK Translation Code

The program BLTOSTAB was written to take the output of the Harris code and

translate it into the binary file form used by the e**MALIK code. This relatively

long code generates the sophisticated binary input file, username.bfl, required

by the stability code e**MALIK. It does this by reading the Harris code out-

put files, username.prt and username.pro, along with the wall-curvature data

saved in username, bl from the Sivells code, and the Reynolds number scaling data

saved in username.re. Besides the main binary output file, BLTOSTAB generates

userna.me, cur for checking the surface curvature computations, username, gor for

printing Ggrtler number data, and username, sck for printing information to check

the computations for Sivells input data. BLTOSTAB can also read in surface geome-

try data that is then differentiated numerically to determine radii of curvature; this

feature was implemented to allow running the Chen test case for Ggrtler instabil-

ity, described below. In this case, the file username.usk is generated for checking

computations performed using data not obtained from the Sivells code. A listing of

BLTOSTAB is appended. For lack of resources, this heavily commented listing must
suffice for documentation.

2.5 Transition-Estimation Code

The Langley program e**MALIK was used to perform e**N estimates of transition

location [11, 10]. Although the manual, reference [11], is old and imprecise, it is

apparently the best version in existence. The manual has been supplemented by

examination of the source code, and private communications with Mujeeb Malik,

Robert Spall, and Scott Anders. Because of the uncertainties of using this complex

code with limited documentation, test cases were run for both the T-S and GSrtler

instabilities, to confirm proper operation.

The e**MALIK code was also modified slightly, again only to change the in-

put/output formatting somewhat, and to add error trapping code. The code reads

stability computation instructions from a file piped into the executable with the

Unix < command, and writes the general output to a file specified with the Unix

> command. It writes summary data to a file username, sum; the string username

is passed to the code through an additional read statement at the bottom of the

input file. The binary-form input data for the boundary-layer profiles is read from



username.bfl. The code was also modified to automatically loop through several

different frequencies or spanwise wavenumbers in one execution, a property the ver-

sion furnished to this author in 1991 did not have, although the manual suggested

that it did. This is the most CPU-intensive code in this quiet-nozzle design system.

The author has most recently been executing it on his department server, a 4-CPU

Sun Sparcstation 1000 that has 256 megabytes of RAM. A half-dozen different fre-

quencies can be studied over few dozen streamwise stations in typical runs that

can usually be carried out overnight. Thus, although this code is CPU-intensive, it

remains practical to perform design studies with it in a modern workstation envi-

ronment.

2.5.1 Test Case for T-S Instability Computations

Use of the e**MALIK code for computation of T-S instabilities was benchmarked

back in the summer of 1990, using test case 6 from reference [10]. Test case 6 is

for the flow on a flat plate at Mach 4.5, R = [X/-_z/u_ = 1500, adiabatic wall,

and a total temperature of 1100 Rankine. Table IX on p. 407 of reference [10] gives

spatial case results for a nondimensional frequency w = 0.23. There, the eigenvalue

is given as (0.2534081, -0.0024932) for the most accurate computation. The author's

version of e**MALIK was first checked by running it with the internal self-similar

boundary-layer solver, which produced (0.253397, -0.00250489). This agreement was

considered to be very good. However, when the self-similar boundary-layer profiles

were generated by the author of this paper, translated into e**MALIK input form

by BLTOSTAB, and the stability was recomputed, the results were not as good. In this

case, at a slightly different R = 1495, c_ was found to be (0.25195,-0.00229). This 10

percent difference was doubtless caused by imprecise generation of the boundary-

layer profiles; the overall agreement indicates that the BLTOSTAB code generates the

proper e**MALIK input. At the time of this test, the BLTI3STAB code differentiated

the Harris velocity profiles numerically, instead of using the internally-generated

Harris derivatives, so agreement would no doubt be better at the present time.

2.5.2 Test Case for G6rtler Instability Computations

Benchmark data for the G6rtler test-case was generously supplied by Frank Chen,

along with data for the nozzle coordinates and pressure distribution. The data is for

the Mach 6 NTC nozzle currently in use at Langley [6], at a total pressure of 100 psia

and a total temperature of 360F, under adiabatic wall conditions. The summary

output file printed by the e**MALIK code was supplied, although detailed data

on the boundary-layer computations performed by Chen were no longer available.

This test-case tests both the boundary-layer computations (carried out in both cases
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with the Harris code) and the useof the e**MALIK code. Sincethe Chen nozzle
designusesa modified Nelmscode,and the systemdescribedhere usesthe Sivells
code,the MOC nozzle-designcodeitself is not tested. Sincethe Chen data for the

surface coordinates are given to four places, without derivatives, auxiliary code was

added to the 13LTOSTAI_ routine to allow reading in this non-Sivells coordinate data.

The ('hen coordinate data was differentiated using the same LaRC routine used by

('hen, CSDS, which was obtained from LaRC computing center personnel.

Figure l shows the radius of curvature, R, as a function of the axial location

z, which is zero at the throat. Note that ,- is the coordinate along the centerline

of the tunnel, not the arclength s along the nozzle wall. Smooth distributions are

obtained in the concave region downstream of about z = 8 inches, but the distribu-

tions become noisy near the downstream end of the nozzle. Additional smoothing

in the differentiation might have reduced this effect. The precise curvature distri-

butions computed by Chert were unavailable. The Harris code was run using 870
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Figure 1: Radius of Curvature for Mach 6 Test Case
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streamwisestations and 51 points in the wall-normal direction. Figure 2 shows the

edge Mach numbers, .Sic, interpolated by the Harris code to the Chen-supplied data.

The limited precision of the data supplied causes the Harris code to generate some
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Figure 2: Comparison of Edge Mach Number for Mach 6 Test Case

waviness while interpolating. Figure 3 shows the boundary-layer momentum thick-

ness, Reo, comparison. The waviness in the M_ interpolation clearly causes some

waviness in the momentum thickness Reynolds number, Re0, and the current results

are somewhat above those used by Chen. The cause of the small difference is diffi-

cult to determine, since the details of the Chen computation are no longer available.

Both the wall radius of curvature and the momentum thickness are reflected in the

G6rtler number computations, presented in Figure 4. Here, the G6rtler number Go

is based on the momentum thickness 0. Overall, the agreement is good, although

the interpolations and differentiations required in the re-analysis of the Chen data

clearly cause additional scatter. No smoothing has been applied to these computa-

tions. Finally, Figure 5 shows the results of the N-factor computations carried out
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using the e**MALIK code, for the case with 125 waves around the circumference of

the nozzle, which is nearly the most amplified case. Here, s is the arclength along

the nozzle wall, with s = 0 being located at the throat. Clearly, the operation of the

Harris, BLTOSTAB, and e**MALIK codes is fundamentally correct, for the results

agree well. Although the close agreement is clearly in some part fortuitous, given

the minor disagreements in the previous plots, the test-case shows that this part of

the integrated and fairly automatic software produces the proper results.

2.6 Summary of Software Status

This software is now working and fairly well tested. With this semi-automatic soft-

ware, it is possible to generate nozzle designs in seconds for 2D and axisymmetric

nozzles, although square nozzles take longer. The boundary layers on 2D and ax-

isymmetric nozzles can be computed in minutes on a PC, and then a few overnight

computations on a modern workstation can be performed to estimate the location
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of transition. Thus, one complete iteration of a quiet nozzle design can be carried

out in a workstation environment in a few days, using only an hour or two per day
of engineering labor.

3 Design and Preliminary Evaluation of Super-

sonic Wind Tunnel Nozzles with Square Cross

Sections, for Use in Quiet-Flow Facilities

3.1 Introduction

This effort began in September 1992, and continued intermittently until the termi-

nation of the grant. Sivell's code was again used for the method-of-characteristics

(MOC) design of the nozzles [20]. Although reference [20] suggests that the code
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will generate internal flow streamlines for all the types of nozzles which the code can

generate, minor modifications proved to be necessary in order to generate internal

streamlines for nozzles that included radial-flow regions. A post-processing code was

then written to trace the streamlines upstream from a square cross-section drawn in

the nozzle-exit plane, in order to generate near-square cross-sections from the exact

MOC results, between the exit and the throat. This post-processing code was com-

pleted in fall 1992 and documented in reference [18]. The Hopkins-Hill technique for

designing the transonic region of the nozzles (up to the bleed slot lip) still needed to

be implemented in a reasonably convenient way. This work was completed during

early summer 1993 and documented in reference [2]. Graduate student Timothy

Alcenius carried out the Hopkins-Hill work, and then performed 3D Navier-Stokes

computations of the mean flow in the square nozzles. The position of transition due

to the crossflow instability was estimated using these computations and the cross-

flow Reynolds number technique. Most of the Navier-Stokes results are available in
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reference [1], which appeared in June 1994. Complete results are available in refer-

ence [3], which will be appended to the final report for NAG-I-1607. A summary of

the results has been submitted for publication in the AIAA Journal of Aircraft.

Although the above analyses suggested that crossflow instability would be the

dominant factor in transition of the boundary layers on the square nozzle walls, com-

putations of the Tollmien-Schlichting instability and the GSrtler instability were also

carried out using the e**MALIK code [10]. Although the actual nozzle-wall bound-

ary layer is three-dimensional, these computations were carried out using the results

of a 2D boundary-layer computation of the sidewall boundary layer in the symmetry

plane. Analyses were only carried out for the long Mach 2.4 nozzle described in [1],

since this was thought to be the worst case for these instability modes, and since the

short Mach 2.4 nozzle appeared less practical from the standpoint of the crossflow

instability. A detailed description of these computations forms the remainder of this

section.

3.2 Computations of the Centerplane Boundary Layer in

the Long Mach 2.4 Square Nozzle

The coordinates of the long Mach 2.4 nozzle analyzed by Alcenius are given on p. 129

of the appendix of reference [3]. These coordinates were obtained by Alcenius using

SIVINPUT and the Sivells design program [20]. The input parameters are specified

on p. 23 of reference [3] (Nozzle 2 of Table 1). It should be noted that the nozzle

design codes produce a nozzle with a bleed slot lip that protrudes far upstream of

the throat. Alcenius then cut off the upstream extent of the bleed slot, according to

specifications provided by Ivan Beckwith from NASA Langley, in order to produce

a bleed slot originating 0.175 meters (0.574 ft.) upstream of the throat (p. 129 of

reference [3]). For the computations presented here, the bleed slot was cut off 0.612

ft. upstream of the throat; interpolation to the exact position used by Alcenius was

not performed. Figure 6 shows that the coordinates are identical, except for the

difference in leading and trailing extent (Alcenius's last point is at 4.197 ft., the

last point used here is 4.165 ft.). Here, z is again the coordinate along the nozzle

centerline, beginning at the throat, and the y-axis is normal to the z-axis. Figure 7

shows the displacement thickness (6*) of the 2D boundary layer calculated using the

centerplane pressure distribution and the Harris code [8]; the close agreement shows

that the methods used were the same. Although the small discrepancy about 3 ft.

downstream of the throat is somewhat troubling, this slight variation in a strong

favorable pressure gradient should not have much effect on the stability. Although

the point is not discussed in reference [3], it should be noted that both computations

were carried out in 2D and not axisymmetric mode - transverse curvature is taken to

be zero on the flat sidewalls, and the crossflow effects are entirely neglected for these
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computations. Also, both computations presented here were carried out assuming

an isothermal wall temperature of 520 Rankine. Since this is nearly equal to the

stagnation temperature, 540 R, and the Mach number is not high, the conditions

are nearly adiabatic. The stagnation pressure is taken as 100 psia, as in Alcenius's
work.

3.3 Estimates of Transition in the Long Mach 2.4 Square

Nozzle due to the GSrtler Instability

This instability was analyzed with the e**MALIK code, using the nozzle-design

software described above. The boundary-layer data were read in through the exter-

nal binary file generated from the Harris code output by the translation program

BLTOSTAB. The body was assumed 2D, 71 grid points were used in global computa-

tions and 141 in local computations, and computations were begun at the location
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where the curvature becomes concave. Since ibeta was set to 0, the input parameter

betx is actually the dimensional wavenumber, k, per ft. (note that the e**MALIK

manual [11] is erroneous in this regard; the correction was provided verbally by

M. Malik on 16 July 1991). This wavenumber parameter was varied through 500,

1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, and 4000 per

ft. Since the momentum thickness 8 of the boundary layer at the first concave

station was about 2 x 10 -4 ft., and the wavelength A = 27r/k, this corresponds to

spanwise wavelengths )_/0 ranging from 60 to 8. The corresponding values of BETA

output by the code range from 0.19 to 1.9; these spanwise wavenumber values are

non-dimensionalized by the distance from the leading edge and the edge values of

the fluid properties. The spanwise wavelength of the GSrtler waves is maintained

constant as the amplification is integrated downstream. Figure 8 summarizes the

integrated amplification between the streamwise distances of 2.80 and 4.17 ft. The

peak amplification is about 5.7, which occurs at a BETA of 0.9. Based on the Langley
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N-factor criterion of 7.5 for G6rtler transition [22], this instability is not expected

to cause transition. Of course, this estimate neglects interactions with roughness or
other instabilities.

3.4 Estimates of Transition due to the T-S Instability

The T-S computations were performed with the e**MALIK code, and with the same

boundary-layer profiles used for the GSrtler computations. Many computations had

to be performed in order to find the unstable range of frequencies. The results are

shown in Figure 9. Frequencies in the neighborhood of 6 kHz are most unstable.

These have a wave-angle PSI of about 67 degrees, which appears to be reasonable.

The nondimensional frequency OMEGA is about 0.009 for these waves. Since the

integrated N-factor is less than 2, it appears unlikely that T-S instability would

contribute substantially to transition in this nozzle.
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3.5 Summary of Square-Nozzle Design Effort

The design, construction, and shakedown of high speed quiet-flow nozzles is a dif-

ficult task in which many poorly understood tradeoffs have to be made. All of the

difficult high-speed transition phenomena that the nozzles are intended to study

must be estimated in order to best design the nozzles. Fabrication costs are difficult
to estimate in advance.

The square nozzle concept put forward by Ivan Beckwith of NASA Langley was

suggested as a possible method of obtaining the advantages of both axisymmetric

and rectangular (2D) nozzles. The walls are flat downstream of the expansion,

facilitating the use of windows. The nozzle can be disassembled to facilitate polishing

and maintenance of the critical throat region. High Mach number square nozzles

can be machined without excessive difficulties with throat tolerances, and contour

flaws do not focus to the centerline. All four walls see the same accelerating flow,

so it was hoped that crossflow would not be a major problem.
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The studies carried out to date do not support the high hopes initially conceived.

Estimates based on the crossflow Reynolds number (Alcenius) suggested that cross-

flow would be a major difficulty in these nozzles, even in the throat. These estimates

have apparently been confirmed by unpublished e**N estimates carried out by the

High Technology Corp. under the SBIR program. It remains possible that the

throat-region crossflow-transition problem identified by these computations could

be ameliorated by moving the bleed slot downstream. The cost of machining such a

nozzle remains a topic of speculation. It may still be that square nozzles will prove

to be more cost-effective than axisymmetric or 2D designs. The research to date

seems somewhat discouraging but far from conclusive.

4 Measurements of Crossflow Instability on the

Sidewalls of the LaRC Mach 3.5 Low Distur-

bance Tunnel

Part of the proposed crossflow investigations involved measurements of the fiat side-

wall boundary layers in the Mach 3.5 low disturbance tunnel at Langley. These

were to be carried out during summer 1994 by Christine Haven, as part of her

M.S. thesis at Purdue. One and a half days of tunnel access were provided in the

middle of the summer, after about a month of preparation. Although the hot wires,

traverse system, and controller software worked acceptably, major difficulties with

electronic noise were encountered. Although the cause of these difficulties was later

determined, the problem could not be solved in time to allow obtaining low-noise

data. The high noise level and the limited amount of data that could be obtained

has precluded any attempt to draw definite conclusions from this work. A full report

will be provided with the final report on Langley grant NAG-l-1607, which should

be forthcoming in a few months.

5 Summary

This grant enabled the successful development of a new kind of low cost quiet-flow

wind tunnel at Purdue. Since this wind tunnel is the basis for current AFOSR-

supported research, the outcome of the grant has involved successful technology-

transfer to AFOSR. The grant also supported the development of relatively efficient

and user-friendly software for quiet nozzle design, although the full potential of

this software has yet to be put to use. Finally, the grant supported the design and

preliminary evaluation of the new square nozzle concept for quiet-flow wind tunnels.

Although the preliminary evaluations of this concept are somewhat discouraging,
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further researchmight yet showthat squarenozzleswill be an advantageouschoice
in certain circumstances.
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A Source Code for SIVINPUT

PROGRAM SIVINPUT. Fortran-77. For generating input deck to

Sivells nozzle design code (AEDC-TR-78-63).

emailed back 'From moen Wed Nov 25 12:00:09 1992' after use by him.

this program writes an input file in the correct format for

sivells code; sps 6-27-90

modified 9-30-92 for the square nozzle work with streamlines sps

modified to produce starting streamlines on nozzle wall.

mod sps 11-30-92 to make mp=5

mod 11-30 sps to allow choices of IN, XC, IX

add header info. 1-16-95, this is the current version used by Alcenius

for his MS thesis and square nozzle computations (see appendix of

Alcenius MS thesis).

character*lO title

character*20 sivfile

write (*,*) 'enter a rootname to write sivells input file:'

read (*,10) sivfile

title = sivfile

ileng = indez(sivfile,' ') -I

sivfile(ileng+l:ileng+4) = '.inp'

write (*,*) 'opening file-',sivfile,'-for output'

open(unit=2,file=sivfile,status=Jnew ')

write (*,*) 'enter title of run (10 characters): '

read (*,20) title

write (*,*) 'enter jd (-1=2D, O=axisym): '

read (*,*) jd

write (2,30) title,jd

write (*,*) 'enter sfoa:'

read (*,*) sfoa

sfoa=O. !use 3rd or 4th degree distribution

gam = 1.40

ar = 1716.563

zo=l

following three used in bl computations, not used here

ro=1

visc=1

vism=1

xbl=lO00. !gives values at evenly spaced intervals

write (2,40) gam,ar,zo,ro,visc,vism,sfoa,xbl

erite (*,*) 'enter etad,rc,bmach,cmc: '
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ix=O

in=t0

read (.,.) etad,rc,bmach,cmc

xc=O. !so 4th degree distribution, change?

write (_,_) 'enter It, in: '

read (,,*) xc,in

write (_,_) 'xc,in = ',xc,in

fmach=O. !this sets distribution, change?

sf = O. !nozzle throat radius = 1.0

pp = O. !coordinates given relative to throat

write (2,50) etad,rc,fmach,bmach,cmc,sf,pp,xc

write (*,_) 'enter mt,nt,ix,in,md,nd,nf,mp,jc,lr,nx:'

read (,,,) mt,nt,ix,in,md,nd,nf,mp,jc,lr,nx

mr=61 !pts on char. EG, max 125

nt=31 !pts on axis IE, max 149-LR

write (_,_) 'enter ix: '

read (_,_) ix

!is 3rd deriv matched? change?

!use Mach no. distrib on BC, makes 2nd deriv match rad. flow

change?

iq=O !calls for complete contour

md=6! !pts on char. AB, max about 125, odd

nd=15 !pts on axis BC, max about 180,

changed from 49 to 18 sps 7-2-90

write (_,_) 'enter -I for smoothing, ! for no smoothing: '

read (a,_) ismooth

nf=ismooth.81 !pts on characteristic CD. _eg calls for smoothing

mp=5 !pts on GA, conical section, if Fmach ne Bmach

jc=O !if not O, used to print intermediate characteristics

Ir=31 !pts on throat char., - prints out transonic soln

nx=13 !spacing of pts on axis upstream, this no. recc.

mq=O !pts downstream of D

jb=-1 !ne E for no BL computation

jx=l !pos calls for streamlines

it=O !jack points, not used

write (2,60) mt,nt,ix,in,iq,md,nd,nf,mp,mq,jb,jx,jc,

> it,lr,nx

if (ismooth .eq. -1) then

noup=lO !smoothing parameters, arbitrary

nodo=lO

npct=90

write (2,70) noup,npct,nodo

end if

gives streamline distribution that corresponds

to the half wall for conversion to a square nozzle.

note that the number of streamlines requested will

be reduced by one because Sivells automatically

calculates the wall streamline. Sivells output
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100

will have the actual number of streamlines requested.

(moen 10-92)

write (*,*) 'How many streamlines along halfwall?'

read (*,*) nstream

nstream=nstream-1

dx=1.0/(float(nstream)*sqrt(2.0))

ycnt=1.0/sqrt(2.0)

do 100 istream = O,nstream-1

etadstr = etad*sqrt((istream*dx)**2+ycnt**2)

qm = sqrt((istream*dx)**2+ycnt**2)

xj = 1 !look for more streamlines

write (2,90) etadstr,qm,xj

if (ismooth .eq. -1) then

write (2,70) noup,npct,nodo

end if

continue

!see btm page 59

!must have for each!!

close(2)

stop

10 format(a20)

20 format(alO)

30 format(Ix,alO,2x,i2)

40 format(8(Ix,f9.3))

50 format(8(Ix,f9.3))

60 format(lx,i4,1S(i5))

70 format(lx,i4,2(i5))

90 format(3(lx,f9.4),lx)

end

B Output Subroutine Written for Sivells Code

The following is the subroutine added to the Sivell's code to generate output files

for transfer to the boundary-layer code.

* subroutine wrtobl.for

* this subroutine modified from perfc by s schneider 6-90 to write sivells

* output to a file to be read directly by a bl program.

* also computes the upstream contour from halls assumptions and rc

* assumes throat is 0,0, and uses formulas from Hall, (3) and

* assumes sf=O.O at beginlting so throat radius is I unit

* modified 7-31-91 to give full reference to block CONTR same as elsewhere

* modified 9-29-92 to output multiple calls when _rriting streamlines,

* also start z write at Math > I

* dimension arrays in parameter statement. Note arrays must match with

* other routines. Change small from 0.05 to 0.01
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* mod

C

* modified 9-30-92 to find streamline shapes in transonic region

mod 11-25-92 to increase array sizes and use parameter statements sps

* mod 6-4-93 to call hophill to do hopkins-hill upstream of throat, sps

9-I-94 to write out WALTAN and sd with contour for Gortler, sps

SUBROUTINE wrtobl I

4

parameter (mwr=3OO,maxtpt=150,mpt=5OO,mwk=400)

IMPLICIT REAL*8(A-H,O-Z) 5

character*20 blfile,clfile

logical lopen

dimension pepO(maxtpt)

following single for passing to hophill

real*4 rap,thetap,gamp,xendp,ytp

real*4 xp(maxtpt),yp(maxtpt),amachp(maxtpt) !single for passing

* (upstream extension of contour into subsonic-transonic region)

save ica11,xend,numpts,rap,thetap,gamp,xendp

common /centerl/clx(mwr),clmach(mwr)

COMMON /GG/ GAM,GM,GI,G2,GS,G4,Gb,G6,G7,G8,Gg,GA,RGA,OT e

COMMON /CLIME/ AXIS(S,mwk),TAXI(S,mwk),WIP,XI,FRIP,ZOIK,SEO,CSE 7

COMMON /COORD/ S(mpt),FS(mpt),WlLTli(mpt),SD(mpt),WMi(mpt),_TR(mpt 8

1),DMDX(mpt),SPR(mpt),DPX(mpt),SECD(mpt),XBIN,XCIN,GMA,GMB,GMC,GMD 9

following not used here, messy common block, avoid if possible

COMMON /WORK/ A(S,150),B(5,150),FINAL(S,150),WALL(S,mpt),WAX(mpt), 10

* IWAY(mpt),WAN(mpt) 11

COMMON /PROP/ AR,ZO,RO,VISC,VISN,SFOA,XBL,CONV 12

COMMON /PARAN/ ETAD,RC,AMACH,BMACH,CMACH,EMACH,GMACH,FRC,SF,WWO,WW 13

IOP,QM,WE,CBET,XE,ETA,EPSI,BPSI,XO,YO,RRC,SDO,XB,XC,AH,PP,SE,TYE,XA 14

* COMMON /TROAT/ FC(6,51) 15

* COMMON /COITR/ ITLE(3),IE,LR,IT,JB,JQ,JX,KAT,KBL,KING,KO,LV,IOCON, 16

* IIi,MC,MCP,IP,IO,ISE,JC,M,MP,NO,i,iP,NF,NUT,nr,lc,md,mf,mt,nd,nt 17

* this is full common block reference to CONTR taken from routine AXIAL

COMMON /CONTR/ ITLE(S),IE,LR,IT,JB,JQ,JX,KAT,KBL,KING,KO,LV,NOCON,AXI 12

IIN,MC,MCP,IP,IO,ISE,JC,M,MP,MO,I,NP,NF,NUT,NR,LC,MD,MF,NT,ND,NT AXI 13

* following common block filled by call to tcoeff, gives coefficients of

transonic series solution - sps

common /transc/gr,gs,gt,gv,gk,u42,u22,u63,u43,u23,up2,upO,

> v42,v22,vO2,v63,v43,v23,v03

data tiny/1.0e-5/,eangle/10.O/ !degrees, must be gt. 0

(allow I percent error in computation of upstream contour; this is

* a small size of mach number .... )

* Note that a choice of 0.08 for small gives amstar2 > possible in upstream

part of transonic solution near centerline, 9-29-92

change small from 0.01 to 0.002 I0-21-92, was giving problems when

Mike Moen was running mach 3.5 test cases in axis_

data icall/I/

C

if (icall .eq. I) then
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(first call to wrtobl)

inquire (unit=3,name=blfile,opened=lopen)

if (lopen) then

write (.,.) 'writing nozzle summary for bl read to ',blfile
else

write (*,*) 'no file open for writing bl info to!!!???'

return

end if

inquire (unit=4,name=clfile,opened=lopen)

if (1open) then

writs (*,*) 'writing nozzle summary for cl to ',clfile

else

write (*,_) 'no file open for writing cl info to!!!???'

return

end if

else

write (*,*) 'wrtobl, call ',icall,' for streamline dump'

end if

get some things needed for transonic case and for cl mach distribution

if (is .eq. O) then

* (planar)

sigma = 0.0

else

* (axisymmetric)

sigma = 1.0

end if

sl = rc + I

alambd = sqrt( (l+sigma)/((gam+l)*s!) )

write out the cl mach number distribution info, for first call only

* subsequent calls are to write streamline data

if (icall .eq. 1) then

* first, compute the number of points already in the array:

* (this is necessary because of overlap and half-filling in method)

numpts = i

do I0 i = 2,mwr

if (clx(i) .gt. clx(numpts)) then

* (a real point)

numpts = numpts + 1

clx(numpts) = clx(i)

clmach(numpts) = clmach(i)

else

* (should be a zero point)

if (clx(i) .ne. 0.) then

write (2,*) 'WRTOBL: dropping cl point which is ',

> i,clx(i),clmach(i)
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end if

end if

10 continue

write (4,95) ITLE,XBIM,XCI_,SF,frip

write (4,*) 'z computation begins at first point where M>1'

write (4,*) ' following line is npts, then x,machno.,z,mu '

write (4,*) numpts + 2*nt

* first, write the points up to the radial flow region:
z=O.O

do 20 ii = 1,numpts

if (clmach(il) .le. emach) then

if (clmach(il) .gt. 1.0) then

amu = dasin(1.O/clmach(il))

else

c write (*,*) 'mach number on centerline it 1, skip when'

c write (*,*) ' computing sidewall mach lines'

c write (*,*) 'for clmach,il=',clmach(il),il

amu=O.O

end if

if (il .gt. I) then

z = z + tan(a_u)*(clx(il)-clx(il-1))

end if

write (4,15) clx(il),clmach(il),z,amu

15 format(4(e14.7,2x))

illast = il

else

go to 21

* *(exit the loop)*
end if

20 continue

21 continue

* now, write the radial flow region

if (abs(xbin-(xb*sf+frip)) .gt. tiny) then

write (*,*) ' xbin,xb= ',xbin,xb

write (*,*) ' sf,frip= ',sf,frip

stop 'problem with xbin'

end if

xein = xe*sf+frip

c write (*,*) 'xbin,xein= ',xbin,xein

deltam = (bmach - emach)/(2*nt)

gain1 = 2.0/(gain+l)

ga_2 = (gam-1)/(gam+l)

gain3 = (gam+l)/(2.0*(gam-1))

c write (*,*) 'gain,l,2,3=' ,gam,gaml,gam2,gam3

do 30 i2 = 1,2*nt

xmach = emach + i2*deltam

* (following implements eqn 29 of sivells report)

rhs = ((gaml + gam2*xmach**2)**gam3)/xmach
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xsorce = rhs**(1.O/(1.O+sigma))

xin = xsorce*sf + frip

amu = dasin(1.O/xmach)

if (i2 .gt. 1) then

z = z + tan(amu)*(xin-zinold)

xinold = xin

else

* write (4,*) 'z,amu,clx(illast),xin=',z,amu,clx(illast),xin

z = z + tan(amu)*(xin-clx(illast))

xinold = xin

end if

write (4,15) xin,xmach,z,amu

30 continue

c write (*,*) 'siEma=',sigma

c write (*,*) 'xin,xmach,xsorce,rhs=',xin,xmach,xsorce,rhs

* now, write out the points beyond the radial flow region

do 40 i3 = il,numpts

if (clmach(i3) .gt. bmach) then

amu = dasin(1.0/clmach(i3))

z = z + tan(amu)*(clx(i3)-clx(i3-f))

write (4,15) clx(i3),clmach(i3),z,amu

end if

40 continue

close (unit=4)

* (done with writing cl mach distribution) *

end if

* following gives coefficients of transonic soln, needed for pressure

call tcoeff(gam)

if (pp .ne. O) stop 'coords should be computed rel. to throat'

* (checks to see if coords really computed relative to throat)

* now compute the transonic extension upstream:

* (note that Sivells array below will begin at about the throat!)

* (following uses only that the throat has a radius of curvature of

* rc at the throat. Upstream of the throat, the shape of the entrance

* is arbitrary, as far as the small perturbation transonic solution in

* the throat is concerned.)

* first, determine farthest upstream can reasonably compute:

* (let second term in contour be small compared to first)

* (this only works for the nozzle contour, which is arbitrary and determines

* the interior streamlines)*

if (icall .eq. i) then

write (*,*) 'Using Hopkins-Hill nozzle shape in upstream tr.'

write (*,*) 'enter entry angle, degrees, gtO: '

read (*,*) eangle

write (*,*) 'using nozzle entry angle of ',eangle,' degrees'
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* now compute a series of points down to the throat:

6-28-90 skip the point at the throat, end up with two, gives trouble

(compute same number of points as used in throat characteristic)

numpts = abs(ir)

if (numpts+l .gt. maxtpt) stop 'too many points in wrtobl array'

yth = 1.0 !throat radius is 1.0, wangle is degrees

xend= -l.tiny

* (!small fraction of radii, upstream near throat, not overlap)

* (corrected sign 9-2-94 sps)

* Note that hophill is single precision!! must convert!!

rap = rc

thetap=eangle

gamp : gam

xendp :xend

ytp = yth

call hophill(rap,thetap,gamp,xendp,ytp,numpts,xp,yp,amachp)

* this routine returns numpts values of x,y,amach along streamline

* upstream from wangle to xend. Sets xbegin for later calls.

else

• throat = s(1) !these are the first points in Sivells streamline

ytp = fs(1) !must connect to transonic streamline

if (xthroat .ne. 0.0) then

write (*,*)'xthroat= ',xthroat,' first sivells ptp

* pause 'WRTOBL: • should be 0 at throat'

* first point on streamline MUST be greater than O, for sonic line

* bows downstream!

end if

call hophill(rap,thetap,gamp,xendp,ytp,numpts,xp,yp,amachp)

end if

do 60 itx = 1,numpts !get pepO, convert back to double

amach2 = amachp(itx)**2

denom : (I. + amach2*(gam-l.)/2.0)**(gam/(gam-l.))

pepO(itx) = l.O/denom

60 continue

* now write out the bl data to a special file in easily read form
$

if (icall .eq. I) then

write (3,95) ITLE,XBIN,XCIN,SF,_rip

95 FORMAT (IHI,3A4,' sivells, xbin= ',FII.6,

> ' xcin=',Fll.6,', sf= ',fll.6,' frip=',fli.6)

vrite (3,*) 'next is total pts. and no. upstream of throat,'

write (3,*) 'then •,y, ps/pO, dy/dx, d2y/dx2 are: '

write (3,*)

> 'waltan=dy/d• and sd=d2y/dx2 only written downstream of throat'

* note that these two are given in PERFC, format statement 89, 9-94 sps

write (3,*) king+numpts, numpts

write (3,103) (xp(k),yp(k),pepO(k),k=l,numpts)
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103

105

write (3.105) (s(k),fs(k),spr(k),waltan(k),sd(k),k=1,king)

format(3(e14.7,1x))

format(S(e14.7,1x))

else

write (3,*) 'next is streamline for icall= ',icall

wrlte

wrlte

wrlte

wrlts

wrlte

wrlte

end if

(3,*7 'totpts and no. pts upstream of throat,'

(3,*7 ' then x,y, pe/pO: '

(3,*) 'downstream of throat, also dy/dx and d2y/dx2'

(3,*) king+numpts, numpts

(3,103) (xp(k),yp(k),pepO(k),k=l,numpts)

(3,105) (s(k),fs(k),spr(k),waltan(k),sd(k),k=1,king)

icall = icall + 1

return

$

* following all format statements saved for comparison

* write (3,84) RC,ETAD,AMACH,BMACH,CMACB,EMACH,MC,AH 476

* write (3,90) (K,S(K),FS(K),WALTAN(K),SD(K),WMN(K),DMDX(K),SPR(K),D 478

* IPX(K),K=I,KING) 479

C 493

* save original format statements from perfc for reference **********$*********
*84 494

, 495

,89 501

. 502

*90 503

*92 505

, 506

*95 509

, 510

END 527

FORMAT (1H ,4H RC=,FII.6,3X,SHETAD=F8.4,4B DEG,3X,6HAMACH=FIO.7,3X

1,6BBMACB=FIO.7,3X,6HCMACH=F10.T,3X,6HEMACH=FlO.7,3X,A4,2HH=Fll.7/)

FORMAT (IH ,9X,5HPOINT,TX,SHX(IN),9X,5HY(IN),9X,SHDY/DX,8X,7HD2Y/D

1X2,7X,8HMACH NO.,7X,SHDM/DX,9X,bBPE/PO,11X,6HDPR/DX/)

FORMAT (10(IOX,I3,2X,OP6FI4.7,1P2E16.5/))

FORMAT (1H ,' RC=',FII,7,', STREAMLINE RATIO=',FI1.8,', TEST

I CONE BEGINS AT',F12.7,' IN.' / )

FORMAT (1H1,3A4,45H INVISCID NOZZLE CONTOUR, RADIAL FLOW ENDS ATFt

11.6,25H IN., TEST CONE BEGINS ATFll.6,19H IN., SCALE FACTOR=F9.4/)

C Sivells-to-Harris Interface Code

* PROGRAM MAKEBLIN.FOR.

* Steven P. Schneider Purdue University 317-494-3343

* this is a program to read in output from the sivells code,

* add specifics for Re, and write in a form readable

* by the Harris code for bl.

* specific for the nozzle block problem sps 6-90

* add some code for the contraction computation 12-5-90 sps

add code for output of file for arbitrary shape using modified Newtionia_ thy

* sps 3-6-91

* allow for arbitrary power-law distribution of points 3-8-91 sps,
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* and for easy change of jsolve

* add code for reading in pressure data from euler code, and shock location

* data, and writin E an output file for the harris code 7-13-91 sps

* modified to fix bug with error code on different case 7-28-91 sps

* modify a bit to use with whole nozzle, not just sivells part 2-4-92 sps

* modify to make print stations go to te of nozzle, not just near. 4-8-93 sps

* modify 8-94 to make thermal 8C explicit, add bullet solution

* modify 9-8-94 to skip 4 lines in sivells for new sivells radcur format, sps

parameter(maxpts=lOOO,jsolve=1)

* jsolve is the number of solution stations per station of input data

* can increase to make finer resolution solution possible

character*80 text

character*20 root,infile,outfile,parmfl,tawfile

* most of these are the number of stations along the moc soln

* ss is the number of stations in bl soln to get

dimension x(maxpts),y(maxpts),pepo(maxpts),s(maxpts),theta(maxpts)

dimension proval(maxpts),prntval(maxpts),ss(jsolve*maxpts)

dimension tw(maxpts)

dimension xsh(maxpts),ysh(maxpts) !shock location

common /param/pstar !for passing to subroutines for arbitrary shapes

data pi/3.1415926535/,ksprnt/1/,ksprof/2/

* *(print info every ksprnt'th soln station; print profile info

* * (every ksprof'th soln station)

* need dense printing of soln for gortler work to get good values

* for derivatives of wall height to get streamwise curvature!

* need lots of profiles for roughness work also
$

.rite (*,*) 'this is the PC version of makeblin'

.rite (*,*) 'unix version differs in numelist format'

.rite (*,*) 'enter root filename for transfer: '

read (*_5) root

5 format(a20)

ileng = index(root,' ') - I

.rite (*,*) 'enter 0 if this is a Sivells (or nozzle) test, '

.rite (*,*) 'enter 1 if this is a flat plate test, '

.rite (*,*) 'enter 2 if this is a Lees modified newtonian test: '

.rite (*,*) 'enter 3 if Euler output for body is to be read: '

write (*,*) 'enter 4 is this is a round cone at zero AOA: '

read (*_*) imodel

***********************************************************************

if (imodel .eq. O) then

.rite (*,*) 'Sivells test or Other nozzle test'

infile(1:ileng) = root(l:ileng)

infile(ileng+l:ileng+3) = '.bl'

.rite (*,*) 'reading input data from file ',infile

open(unit=1_file=infile,status='old')

read (1,10) text
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10 format(a80)

read (1,10) text

read (1,10) text

read (1,10) text

read (1,*) numpts

if (numpts .gt. maxpts) stop 'too many points'

do 50 i=l,numpts

read (I,*) x(i),y(i),pepo(i)

50 continue

close (unit=l)

write (*,*)

> ' wall. temp. BC? Enter 1 if isothermal, 2 adiabatic, '

write (*,*) ' 3 if Tw/Taw = const: '

read (*,*) itflag

write (*,*) 'read itflag as: ',itflag

* (done reading in info from sivells output file)

*******************************************************************

else if (imodel .eq. I) then

write (*,*) 'enter numpts, mach, gam, plend: '

read (*,*) numpts,amach,gam,plend

gmexp = gam/(gam-1)

gmfact = (gam-l)/2.0

denom = (I.0 + gmfact*amach**2)**gmexp

pepO = 1.0/denom

write (*,*) ' gives pepO= ',pepO

do 60 i = 1,numpts

x(i) = plend*float(i-l)/float(numpts-1)

y(i) = 1.0 !not 0.0, messes up computations

pepo(i) = pepO

60 continue

else if (imodel .eq. 2) then

write (*,*) 'this is a modified newtonian test;'

write (*,*) 'you must enter the shape in source code'

write (*,*) 'enter numpts, mach:' 1, pstar, plend: '

read (*,*) numpts,amach !,pstar,plend

gam = 1.4 !air

if (numpts .gt. maxpts) stop 'too many points'

now compute pressure ahead of shock, ratio to total pressure

in stilling chamber

gmexp : gam/(gam-l)

gmfact : (gam-1)/2.0

denom = (1.0 + gmfact*amach**2)**gmexp

pinfpO = 1.0/denom

write (*,*) ' gives pinfinity/pO= ',pinfpO

now compute stagnation or total pressure behind normal shock,

ratio to p_infty ahead of shock(see Anderson p. 54, 3.17)

denoml : 4*gam*amach**2 - 2*(gam-l)
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piece1 = ( (gam+l)**2 * amach**2/denoml )**(Emexp)

piece2 = (l-gam+2*gam*amach**2)/(gam+l)

ptpinf = piecel*piece2

ptpO = ptpinf*pinfpO

write (*,*) 'pstag on body/p infty is ',ptpinf

write (*,*) 'gives pstag on body/psta E in stilling=',ptpO

cpmax = (2.0/(gam*amach**2)) * (ptpinf - 1) !Anderson 3.19

write (*,*) 'cpmax computed as ',cpmax

• now compute body shape

• for non-sphere shape, do this in subroutine

c write (*,*) 'passing to blunts; pstar,plend=',pstar,plend

• blunts commented out 12-93, find subroutine to bring back

c call blunts(plend,numpts,x,y,theta)

• following does a sphere

do 70 i = 1,numpts

x(i) = -1.0 + float(i-1)/float(numpts-1)

y(i) = sqrt(1.O - (x(i))**2)

if (y(i) .gt. 0.0) then

dydx = -l*x(i)/y(i) !needed for newtonian thy

theta(i) = atan(dydx)
else

theta(i) = pi/2.0

end if

70 continue

write (*,*) 'last x,y are ',x(numpts),',',y(numpts)

do 80 i = 1,numpts

• now compute ratio of pe to ptotal ahead of shock, using Lees

• modified newtonian thy - formula derived using p. 84

pepo(i) = (ptpO - pinfpO)*(sin(theta(i)))**2 + pinfpO

if (pepo(i) .ge. 1.0) pepo(i) = 0.99999 !so not singular
80 continue

else if (imodel .eq. 3) then

write (*,*) 'working for euler data for blunt body'

write (*,*) 'enter math, gamma: '

read (*,*) amach,gam

• now compute pressure ahead of shock, ratio to total pressure

• in stilling chamber

Emexp = gam/(gam-1)
gmfact = (gain-l)/2.0

denom= (i.0 + gmfact*amach**2)**gmexp

pinfpO = 1.0/denom

write (*,*) ' gives pinfinity/pO= ',pinfpO

• now compute stagnation or total pressure behind normal shock,

• ratio to p_infty ahead of shock(see Anderson p. 84, 3.17)

denoml = 4*gam*amach**2 - 2*(gam-1)

piece1 = ( (gam+l)**2 * amach**2/denoml )**(_exp)

piece2 = (1-gam+2*gam*amach**2)/(gam+l)
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ptpinf = piece1*piece2

ptpO = ptpinf*pinfpO

write (*,*) 'pstag on body/p infty is ',ptpinf

write (*,*) 'gives pstag on body/pstag in stilling=',ptpO

write (*,*) 'reading euler data for blunt body: '

infile(1:ileng) = root(1:ileng)

infile(ileng+1:ileng+4) = '.eul'

write (*,*) 'reading input data from file ',infile

open(unit=l,file=infile,status='old')

read (1,90) lineskip

90 format(i6) !number of lines to skip

do 92 i = l,lineskip !skip 'lineskip _ lines of text

read (1,91) text

91 format(a80)

92 continue

read (1,_) numpts

if (numpts .gt. maxpts) stop 'too many points'

do 95 i=1,numpts

read (1,*) x(i),y(i),pepinf !read euler data for pressure

pepo(i) = pepinf*pinfpO
9S continue

Now read shock location data:

read (1,90) lineskip

do 96 i = 1,1ineskip !skip 'lineskip' lines of text

read (1,91) text

96 continue

read (I,*) numshpts

if (numshpts .gt. maxpts) stop 'too many points _

do 97 i=l,numshpts

read (I,*) xsh(i),ysh(i) !read euler data for shock location

97 continue

write (*,*) 'done reading from file'

else if (imodel .eq. 4) then

write (*,*) ' cone: enter numpts, gam, axial length: '

read (*,*) numpts,gam,axleng

write (*,_) ' enter half-angle (deg.), shock angle, pepO: '

read (*,_) anghalf, wave, pepO

anghalf = anghalf_pi/180.O

do 100 i = 1,numpts

x(i) = axleng*float(i-1)/float(numpts-1)

y(i) = tan(anghalf)_x(i) )not 0.0, messes up computations

pepo(i) = pepO

I00 continue

else

stop 'imodel must be 0,1,2,3, or 4'

end if
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* now check computed values

do 150 i = 1,numpts

if (imodel .eq. 2 .or. imodel .eq. 3) then

if (pepo(i)-ptpO .gt. -O.01*ptpO) then !arbitrary nearness

wrlte (*,*) 'pepo(',i,')= ',pepo(i)

wrlte (*,*) 'ptpO= ',ptpO

write (*,_) 'if first gt second when computed by VGBLP,'

wrlte (*,*) 'this will give surface static pressure larger'

wrlte (_,_) ' than the total pressure on the surface'

wrmte (*,e) 'this would be a fatal error in VGBLP'

if (pepo(i) .gt. ptpO) then

write (*,_) 'reducing pepo(',i,') to 0.99999_ptpO'

write (a,_) ' to forstall error in VGBLP'

pepo(i) = O.99999*ptpO

end if

end if

end if

150 continue

now read in parametric info from parameter file

parmfl(1:ileng) = root(l:ileng)

parmfl(ileng+l:ileng+3) = '.re'

write (*,*) 'reading reynolds number scaling info from ',parmfl

open(unit=l,file=parmfl,status='old')

read (1,5) outfile !read filename to write to

read (1,*) throat !throat radius in feet

(assumes input scaled so throat radius is one unit)

(for more general shapes, just treats 'throat' as scaling parameter

for lengths)

read (1,_) prandtl

ptotal,ttotal,xmach are conditions at infinity - see p. 44

for nozzle are stagnation chamber conditions

for non-nozzle, xmach seems to affect mostly the computations

involving the flow behind the shock. Should be freestream values!!

read (1,_) ptotal

read (I,,) rgas

read (I,_) ttotal !ahead of le shock

read (1,*) xmachi

if (imodel .he. O) then

if (xmachi .It. 1.0) then

write (*,*)

write (_,*)

write (*,*)

end if

end if

close (unit=l)

'xmach given as ',xmachi

'should be freestream value ahead of shock,'

' not the value at stagnation!!'
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* now set defaults for input to harris program (besides harris's)

if (imodel .eq. 2 .or. imodel .eq. 3) then

ibody = i !stag pt at nose

j = 1 !axisymmetric

else if (imodel .eq. I) then

ibody = 2 !no stagnation point at nose

j = 0 !2D

write (*,*) 'assuming 2D geometry'

else if (imodel .eq. O) then

write (*,*) 'enter 0 if 2D nozzle, I if axisymmetric: '

read (*,*) j

if (j .ne. 0 .and. j .ne. 1) stop 'j must be 0 or 1'

else if (imodel .eq. 4) then

ibody = 2 !sharp cone, no stag. pt.

j=1
end if

ie = 51 !from test case number 4

if (imodel .eq. 3) then

ientro = 2 !variable entropy calculation

else

ientro = 1

end if

igeom = i !create coords using geometric series; need xk,ie,xend!!

kodunit=O !US units

if (itflag .eq. 1 .or. imodel .eq. 4) then

kodwal=l !specify wall temperature distribution (no time to heat)

write (.,e) ' setting kod.al=l, isothermal .all!!'

write (*,*) 'setting wall temp equal to total temp, be.are!'

* model temp same as total temp, ambient

note that total temperature behind shock is the same as ahead of shock

* *(not quite stagnation point temp. but close)*

t.all = ttotal

else if (imodel .eq. 2) then

kod.al=l

write (*,*) 'enter isothermal wall temperature, rankine: '

read (*,*) twall

write (*,e) 'using .all temp= ',twall

else if (itflag .eq. 2 .or. imodel .eq. 3) then

kodwal=2 !specify adiabatic wall

_rite (*,*) ' setting kodwal=2, adiabatic .all!!'

else if (itflag .eq. 3) then

kod.al = I

.rite (*,*) 'setting kod.al=l, isothermal .all'

.rite (*,*) 'enter file to read, .prt file with Taw/TTI data: '

read (*,5) tawfile

.rite (*,*) 'reading Ta./TTI from ',tawfile

.rite (*,*) 'enter const, where Tw/Taw = const: '
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170

read (*,*) tratio

write (*,*) 'using tratio= ',tratio

open (unit=11,file=tawfile,status='old')

read (11,10) text

read (11,10) text

read (11,*) numptsl,prandtll,jl,omegal,rrefl,urefl

if (numpts .ne. numptsl) then

numpts = numptsl !reset and solve at prey. solution stations!

iendl = numpts

throat = 1.0 !don't rescale dimensions!!

else

iendl = jsolve*numpts

end if

do 170 i = i,numpts

read (11,*) zl,rmil,sl,yel,dltastl,thetal,resi,pel,tei,uei,

twottl,amachel,amuel,xil,qsdl,hdl

tw(i) = ttotal*twottl*tratio

x(i) = zl

y(i) = rmil

pepo(i) = pel/ptotai

continue

close (unit=ll)

else

stop 'logic error in setting wall thermal BC'

end if

if (itflag .ne. 3) then !otherwise set above when read file

iendl = jsolve*numpts !number of soln stations

end if

proinc = I0.0 ! hopefully, none

prntinc = 10.0

sst = le+20 !no transition on body until then (laminar flow)

if (imodel .gt. I .and. imodel .It. 4) then

wave = 90.0 !shock wave angle at s=O, needed for test case 4 type flows

else if (imodel .eq. 4) then

write (_,*) 'read shock wave angle at origin as: ',wave
else

wave = 0.0

end if

xend = 120

xend = 10

xk = 1.275

xk = 1.1

!needed for shockless type flows

c !from blasius test case

!as in test case 4

c )value used in test cases in book, sets grid

c !because value used in text gives hyper-dense

* grid near wall, which makes for difficulties.

c xk = 1.0 !like test case number 4

c xk = 1.0S !because 1.0 gives little near wall for sphere

xk = 1.1 !because 1.OS gives not great resolution for stability

* compute the arc length along the wall (see (66) of harris paper)
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* (approximate with straight line segments between stations)

s(1) = o.o

if (iZflag .le. 2) then
tw(1) = t_all

end if

do 180 i = 2,numpts

s(i) = s(i-1) + sqrt( (x(i)-x(i-1))**2 + (y(i)-y(i-1))**2)

if (itflag .le. 2) tw(i) = twall )set above, assumes same along wall
180 continue

* compute the s stations to get soln at, and to write at, even spacing

* in sqrt(s) normally, other power for other cases

if (imodel .It. 2) then

power = 2.0

write (*,*) 'using square root distribution of pts'

else

* with sphere, have problems with stepsize increasing too rapidly near le

power = 1.0

write (*,*) 'using linear distribution of pts, good for blunt'

* *(try this, since problems with T<O at le)*like test case 4

end if

rootl = l.O/power

rsinc = (s(numpts)-s(1))**rootl/float(iendl) !try-

ss(1) = rsinc**power

ss(2) = ss(1) )required

ss(3) = ss(1) !also required, actually

srun= 3*ss(1) !running value of s

iprnt = 0

ipro = 0

do 200 i = 4,iendl

srunold = srun

srun = ( (srunold)**rootl + rsinc )**power

ss(i) = srun-srunold

* add last part to followin E to have a print station at the end:

if (mod(i,ksprnt) .eq. 0 .or. i .eq. I .or. i .eq. iendl) then

iprnt = iprnt + I

if (iprnt .gt. maxpts) then

write (*,*) 'iprnt = ',iprnt,' exceeded maxpts'

stop 'fatal error'

end if

prntval(iprnt) = srun

end if

if (mod(i,ksprof) .eq. O) then

ipro = ipro + 1

proval(ipro) = srun

end if

200 continue

* Now write out NAMI namelist into file
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* end

write (*,*) ' writing bl input to file ',outfile

open(unit=2,file=ouZfile)

write (2,*) 'RNAMI'

wrlte (2,*) IBODY=',ibody

wrlte (2,*) IE=',ie

wrlte (2,*) IEND1=',iendl

wrlte (*,*) may need to reset param.inc, note that '

wrlte (*,*) ie is nov ',ie,' and iendl= ',iendl

wrlte (2,*) IENTRO=',ientro

wrlte (2,*) IGEOM=',igeom

wrxte (2,*) IPRO:',ipro

wrlte (2,*) IPRNT=',iprnt

wrlte (*,*) ipro and iprnt are ',ipro,iprnt

wrlte (2,*) J=',j

wrlte (2,*) 'KODUNIT=',kodunit

wrlte (2,*) 'KODWAL=',kodwal

if (imodel .ne. 2) then

phii = (180.O/pi)*atan((y(2)-y(1))/(x(2)-x(1)))

else

write (*,*) 'setting leading edge angle = 90 degrees'

phii = 90.0

end if

wrlte (2 *) 'PHII=',phii

wrxte (2 *) 'PR=',prandtl

wrlte (2 *) 'PRNTINC=',prntinc

wrlte (2 *) 'PRNTVAL=',(prntval(i)ethroat,i=i,iprnt)

wrlte (2 *) 'PROI_C=',proinc

wrlte (2 *) 'PROVAL=',(proval(i)*throat,i=1,ipro)

wrlte (2 *) 'PTi=',ptotal

write (2 *) 'R=',rgas

write (2:*) 'SST=',sst

write (2,*) 'TTi=',ttotal

wrlte (2,*) 'WAVE=',wave

wrlte (2,*) 'XEND=',xend

write (2,*) 'XK=',xk

wrlte (2,*) 'XMA=',xmachi

wrlte (2,*) '/' !end of namelist input

of writing naml. Now compute and write nam2:

wrlte (2 *) '&NAM2'

write (2 *) 'IUMBER=',numpts

write (* *) 'and NUMBER is ',numpts

wrlte (2 *) 'PE=',(pepo(i)*ptotal,i=l,numpts)

write (2 *) 'RMI=',(y(i)*throat,i=l,numpts)

wrlte (2,*) 'S=',(s(i)ethroat,i=l,numpts)

write (2 *) 'SS=',(ss(i)*throat,i=i,iendl)

if (kodwal .eq. i) then !specified wall temp

write (2,*) 'TW=',(tw(i),i=l,numpts)
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else !specified heat transfer

write (2,500) numpts-1 !make adiabatic wall

500 format('QW=',i4,**O.O,O.O') !,0.0 kluge for compiler bug

end if

write (2,*) 'Z=',(x(i)*throat,i=1,numpts)

write (2,*) '/'

* end of writing nam2. Now write nam3, if required

if (imodel .eq. 3) then !doing entropy computations through shock

write (2,*) '_NAN3'

.rite (2,*) 'NUMBER=', numshpts

'no. numshpts (JL) is ',numshpts

'RRS= ',(xsh(i)*throat,i=1,numshpts)

'ZZS= ',(ysh(i)*throat,i=l,numshpts)

write (*,*)

write (2,*)

write (2,*)

end if

write (2,*) '/'

close (unit=2)

stop 'end of makeblin J

end

D Harris to e**MALIK Translation Code

* BLTOSTAB.FOR

* this is a program to take vgblp data and put in E**NALIK form

* sps 7-2-90

* revised 7-9-90 to fit with input form provided by Naliks vgblp program,

* different from that implied in preliminary paper

* revised 7-17-90 to fix problem with getting correct matches

* also revised to give correct scaling of profiles for emalik code

* revised 7-18-90 to scale before passing to utder, makes cutoffs clearer

* revised 7-16-91 to write more info to .cur file sps

* revised 7-16 and 7-17-91 to get better derivatives of surface shape sps

* and also to skip past unused iterations printed using variable entropy

* computations

* revised 8-27-91 to use derivative data now output by Harris code

* harris code outputs FZ and TZ, which is actually the derive .rt the

* wall-normal coordinate eta at the next stream.is, solution station.

* Ho.ever, we do not normally output every single solution station, so

* cannot just use this at the next solution station output. So accept

* the error involved in using the derive at next solution station in

* place of derivs at current, for now.

* mod. 5-27-94 to read and compute derive in double, needed for t profiles

* mod. 9-2-94 sps to read derive of nozzle contour from .bl sivells file

* (couldnt get good derivatives of nozzle contour from printed data)

* mod 9-9-94 to interpolate sivells data, stations don't match, sps

* mod. 10-14-84 to read curvature data from file when not using sivells, sps

* mod 10-24-84 to use Frank Chen's method of getting curvature from nozzle
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contour data, using old NOS routine, sps.

implicit double precision (a-h,o-z) !needed for derivs

parameter (mpt=1OOO,npt=1000)

character*81 text !try changing to 81 from 80 per 7-91 version

character*20 blfile,outfil,root,profil,curfil,sivfil,refil,gortfl

character*20 sivck,unsivck

dimension z(mpt),rmi(mpt),s(mpt),ye(mpt),dltast(mpt),theta(mpt),

> res(mpt),pe(mpt),te(mpt),ue(mpt),twttl(mpt),ame(mpt),

> amue(mpt),xi(mpt)

dimension xsiv(mpt),ysiv(mpt),ssiv(mpt),dydx(mpt),

> d2ydx2(mpt),radcur(mpt)

dimension df(mpt),coef(mpt,4),wk(7*mpt+9),rrmi(mpt) !for CSDS subroutine

dimension x(npt),u(npt),ul(npt),u2(npt),t(npt),t1(npt),t2(npt)

dimension uldeb(npt),etascal(npt),t23b(npt)

data small/1.0e-4/

data norder/3/ !order of polynomial interpolation

data maxiter/5/ !maximum number of variable entropy iterations in file

data numiter/O/ !number of variable entropy iter written to file

data nhophill/O/ !used as an offset

data eps/O.I/ !fractional error acceptable in derivs, this is

really a check on the unit conversions

data huge/1.0elO/ !if radcur infinite

data df/mpt*1.e-3/ !estimate of standard dev. for CSDS

write (*,*) 'enter root filename for Irriting and reading: '

read (*,5) root

format(a20)

il = index(root,' ') -I

curfil(1:il) = root(l:il)

curfil(il+l:il+4) = '.cur'

write (*,*) 'opening ',curfil,' for curvature output'

open(unit=3,file=curfil)

write (3,*) 'curvature data for this case'

write (3,*) 'first set: nz,z,s,rmi,radcur,epsxr'

gortfl(1:il) = root(1:il)

gortfl(il+1:il+4) = '.got'

write (*,*) 'opening ',gortfl,' for gortler number output'

open(unit=7,file=gortfl)

write (7,*) 'z,s,theta,res,radcur,gortno for file: ',root

sivck(l:il) = root(l:il)

sivck(il+l:il+4) = '.sck'

unsivck(1:il) = root(1:il)

unsivck(il+l:il+4) = '.usk'

blfile(l:il) = root(l:il)

blfile(il+l:il+4) = '.prt'

write (*,*) ' opening ',blfile,' for read printed info'

open(unit=l,file=blfile,status='old')
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read (1,10) text

10 format(aSO)

read (1,10) text !second line of text

* for files with variable entropy computations, several iterations

* may exist in the file, so the print data is redone for several

* iterations, following sequential in file. Skip to last

* read iprnt, prandtl, j which stays the same

read (I,*) iprnt,prandtl,jgeom,omega,rref,uref

if (iprnt .gt. mpt) stop 'too many print stations'

* now read the first set of iprnt values:

do 110 iiter = l,maxiter

do 100 i = 1,iprnt

read (1,*) z(i),rmi(i),s(i),ye(i),dltast(i),theta(i),res(i),

> pe(i),te(i),ue(i),twttl(i),ame(i),amue(i),xi(i)

if (z(i) .It. 0.0) nupstrm = i !number of pts upstream of throat

100 continue

read (1,*,end=120) iprnt2,prandtl2,jgeom2,omega2 !now repeated

read (l,*,end=120) z(1),rmi(1),s(1),

> ye(1),dltast(1),theta(1),res(1),

> pe(1),te(1),ue(1),twttl(1),ame(1),amue(1),xi(1)

if (s(1) .lt. s(iprnt)) then !there IS another iteration

numiter = numiter + I

write (*,*) 'read iteration ',numiter,' read next'

backspace(1) !back up to before the first line in this iter.
else

110

120

* now

150

write (*,*) 'iprnt = ',iprnt

write (*,*) 's(1)= ',s(1),' s(iprnt)= ',s(iprnt)

stop 'fatal error, funny business in reading print file'
end if

continue

stop 'reached maxiter reading variable entropy data'

continue !reached eof looking for next iteration, done-

close (unit=l)

write (*,*) 'there are ',numiter+l,'iteration sets in file'

open profile info file:

profil(l:il) = root(l:il)

profil(il+l:il+4) = '.pro'

write (*,*) 'opening ',profil,' for reading from vgblp'

open(unit=l,file=profil,status='old')

read (1,150) text

format(a80)

read (I,*) ipro

outfil(l:il) = root(l:il)

outfil(il+l:il+4) = '.bfl'

write (*,*) 'opening ',outfil,' for writing to e**malik'

open(_nit=2,file=outfil,form='unformatted')

write (2) text
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write (2) ipro

* Decide if getting curvature data from sivells or elsewhere:

write (,,*) 'where to get curvature data for gortler? '

write (*,*) 'enter I if sivells data, 2 if by spline diff.: '

read (*,*) iwherec

beginning of block where use I of 2 ways to get curvature data

if (iwherec .eq. I) then

* now open the .re file to get scaling information for the sivells file

refil(l:il) = root(l:il)

refil(il+l:il+3) = '.re'

write (*,*) 'opening ',refil,

> ' to get reynolds scaling for sivells'

open (unit=4,file=refil,status='old ')

read (4,150) text )skip first line

read (4,*) throatrad )in feet, scales sivells data

close (unit=4)

* now open the sivells output file directly, the XXXX.bl file used

* as input to the harris code. Pick up the derivatives of the nozzle

contour from here. 9-94 sps

160

sivfil(l:il) : root(1:il)

sivfil(il+l:il+3) = '.bl'

write (*,*) 'opening ',sivfil,' to read sivells contour derivs'

open (unit=4,file=sivfil,status='old')

read (4,150) text

read (4,150) text

read (4,150) text

read (4,150) text !skip header lines

read (4,*) ntotal,nhophill !total hum pts, no. of hopkins-hill

do 160 i = 1,nhophill

read (4,*) xdum,ydum,pratdum )skip past these points

if (i .eq. I) then

sarcl = 0.0

xold = xdum

yold = ydum
else

sarcl = sarcl + sqrt((xdum-xold)**2 + (ydum-yold)**2)

xold = xdum

yold = ydum

end if

continue

nsiv = ntotal-nhophill

do 200 i = 1,nsiv

read (4,*) xsiv(i),ysiv(i),pratdum,dydx(i),d2ydx2(i)
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ISiV(i) = xsiv(i)_throatrad

ysiv(i) = ysiv(i)_throatrad

if (i .eq. 1) then

ssiv(i) = throatrad_sarcl

else

ssiv(i) = ssiv(i-l) +

> sqrt((xsiv(i)-xsiv(i-l))._2 + (ysiv(i)-ysiv(i-1))_*2)

end if

d2ydx2(i) = d2ydx2(i)/throatrad )change to feet from throat radii

if (d2ydx2(i) .ne. 0.0) then

radcur(i) = (1.0+dydx(i)*_2)_l.5/d2ydx2(i)

else

radcur(i) = huge

end if

!concave is minus for malik!

200 continue

close (unit=4)

* (note that must be checked that these are at same stations)

write (_,*) 'opening ',sivck,' for sivells curvature check'

open (unit=4,file=sivck)

write (4,*) 'sivells curvature check: i,xsiv,ysiv,ssiv,radcur'

do 210 i = 1,nsiv

write (4,209) i,Isiv(i),ysiv(i),ssiv(i),radcur(i)

209 format(i4,3(Ix,f12.S),1x,1p,e12.5)

210 continue

close (unit=4)

ngor = iprnt - nupstrm !number of pts in .prt file downstream of throat

else if (iwherec .eq. 2) then !get derivs using contour directly

write (*,*) 'opening ',unsivck,' for unsivells curv. check'

open (unit=4,file=unsivck)

write (4,_) 'non-sivells curv. ck: z,rrmi,dydx,d2ydx2,radcur'

c From Frank_Chen. AERONAUTICS@qmgate.larc.nasa.gov Mon Oct 17 13:53 EST 1994

c RE>gortler test case. The fragment of the code I used is very simple.

* following uses NOS routine CSDS, see header for this subroutine.

IPTI=-I

fumin = iprnt - (2.0*iprnt)_0.5

fnmax = iprnt + (2.0*iprnt)**0.5

fn = (fnmin+fnmax)*0.5 !a guess for what to use

CALL CSDS(mpt,iprnt,Z,_I,DF,fn,IPTI,COEF,WK,IERR)

if (ierr .ne. O) then

write (_,*) 'error return from CSDS, ierr= ',ierr

stop 'halting'

end if

rrmi(1) = coef(i,1) Idh = 0 for these three, the first point

if (rrmi(1) .eq. 0.0) then

write (*,*) 'problem with csds at first pt., rrmi(1)=O'
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write (_,*) 'set to rai(1)'

rr_i(1) = rmi(1)

end if

dydx(1) = coef(i,2)

d2ydx2(1) = 2.0*coef(i,3)

DO 217 I=l,iprnt-I

DH=Z(I+I)-z(i)

* note that rrmi is the interpolated location of rmi from spline fit*

RRMI(I+I)=((COEF(I,4)*DH+COEF(I,3))*DH+COEF(I,2))*DH+COEF(I,I)

dydx(I+I)=(3.0*COEF(I,4)*DH+2.0*COEF(I,3))*DH+COEF(I,2)

d2ydx2(I+I)=6.0*COEF(I,4)*DH+2.0*COEF(I,3)

217 CONTINUE

* end of frank then fraEment (which has been adapted here)

do 220 i = 1,iprnt

if (d2ydx2(i) .he. 0.0) then

radcur(i) = (1.0+dydx(i)**2)**1.5/d2ydx2(i)

else

radcur(i) = huge

end if

write (4,219) z(i),rrmi(i),dydx(i),d2ydx2(i),radcur(i)

219 format(5(lx,lp,el4.7))

* !concave is minus for malik!

220 continue

close (unit=4)

ngor = iprnt !for gortler printout

else

stop 'invalid iwherec'

end if

* end of block where get radcur in one of two ways

now write gortler number output for checking

do 225 i = 1,ngor

if (iwherec .eq. 2) then !s array and radcur array indexed same

retheta = res(i)_theta(i)/s(i)

radcurl = radcur(i)

i2 = i

else )using sivells output

i2 = i + nupstrm

sl = s(i2) !i indexes over .prt array, MOT sivells array

call locate(ssiv,nsiv,sl,jsiv)

if (jsiv .ge. norder) then

call polint(ssiv(jsiv-norder+1),radcur(jsiv-norder+l),

> norder,sl,radcurl,errest)

else

call polint(ssiv(1),radcur(1),norder,

> sl,radcurl,errest)

end if
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if (s(i2) .eq. 0.0) then

write (*,*) 'i2,s= ',i2,s(i2),' s(i2-1)= ',s(i2-1)

stop 'fatal'

end if

retheta = res(i2)*theta(i2)/s(i2)

end if

if (radcurl .it. 0.0) then

gortno = retheta * sqrt(theta(i2)/abs(radcurl))

else if (radcurl .gt. 0.01 then

gortno = 0.0 !convex

else

gortno = huge

end if

write (7,223) z(i2),s(i2),theta(i2),res(i2),radcur%,gortno

223 format(6(1x,lp,e12.5))

225 continue

write (7,*)

> 'now z(in),s(ft),radcur,gortl,gortno from emalik algoritlua:

Now have everything need from prntval stations. Start reading

data from proval stations and writing to malik program

Before read the profiles, skip to the last set of profiles

(multiple sets if doin E variable entropy computations)

Know how many iterations in file from prt file, use this info here

do 250 iskip = 1,numiter inumiter is num in file -I

do 240 istation = 1,ipro !ipro stations

read (1,*) nnp,sl

do 230 j = 1,nnp

read (1,*) xdum,udum,tdum,ulndum,tlndum

230 continue

240 continue

250 continue

open(unit=4,file='bltostab.deb')

300

do 1000 nz = l,ipro !loop over stations

first, get general info for station from iprnt file

read (I,*) nnp,sl !number of points in profile- see malik documents

if (nnp .gt. npt) stop 'too many points in profile'

write (_,*) 'working profile station ',nz,' with ',nnp,'pts'

do 300 i = 1,iprnt )now find matching prnt station:

if (abs(sl-s(i))/sl .it. small) then

jprnt = i

go to 301
end if

continue

write (*,*) 'sl= ',sl
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stop 'no match found *

301 continue

write (*,*) 'found match at print station _,jprnt

write (*,*) 'sl= ',st,' s(jprnt)= ',s(jprnt)

resl = res(jprnt)

rey = sqrt(resl)

dstz = sl/rey

• following uses radii of curvature

• following block interpolates contour derivatives for radius of curvature

• from original sivells data file, using derivs output by sivells

if (z(jprnt) .gt. 0.0 .and. iwherec .eq. I) then

• aredownstream of throat, so do radcurvature

• note that concave curvature should have a minus sign for Malik!!

• following Numerical Recipes routine finds position of pt in array

• ssiv that is just below sl, returns in jsiv

call locate(ssiv,nsiv,sl,jsiv)

• followin E routine performs norder-pt polynomial interpolation

call polint(ssiv(jsiv-norder+l),radcur(jsiv-norder+1),norder,

> sl,radcurl,errest)

write (*,*) 'radcurtab= ',radcur(jsiv-norder+l),

> ' radcurinterpolated= ',radcurl

if (radcurl .It. huge .and. abs(errest)/radcurl .gt. eps) then

write (*,*) 'radcur interpol, err est= ',errest

write (*,*) ' when radcur= ',radcurl

pause ' too large? '

end if

epsxr = dstz/radcurl

call polint(ssiv(jsiv-norder+l),dydx(jsiv-norder+1),norder,

> sl,dydxl,errest)

if (abs(errest)/dydxl .gt. eps) then

write (*,*) 'dydx interpol, err est= _,errest

write (*,*) ' when dydx= ',dydxl

pause ' too large? '

end if

drdx = dydxl

rmil = rmi(jprnt)

else if (iwherec .eq. I) then !upstream of throat in hopkins-hill region

epsxr = 0.0 !neglect gortler upstream of throat

drdx = (rmi(jprnt+1)-rmi(jprnt))/(z(jprnt+l)-z(jprnt))

rmil = rmi(jprnt)

radcurl = 0.0 !flag

else !iwherec .eq. 2, not sivells, use original data

radcurl = radcur(jprnt) !local value

epsxr = dstz/radcurl

drdx = dydx(jprnt)

rmil = rrmi(jprnt) !use value interpolated from spline fit
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end if

write (3,350) nz,z(jprnt),sl,rmi(jprnt),radcurl,epsxr

350 format(Ix,i4,5(Ix,lp,e13.6))

c rmil = rmi(jprnt) !use spline fit or not, depends, moved up

thetal = theta(jprnt)

de1995 = ye(jprnt)

retheta = res(jprnt)*thetal/sl

amel = ame(jprnt)

if (amel .gt. 0.) then

rethm = retheta/amel

else

write (*,*) 'ame1: ',amel,' nz: ',nz

stop 'fatal error'

end if

tel = te(jprnt)

amuel = amue(jprnt)

uel = ue(jprnt)

XC = Sl

pel = pe(jprnt)

kodunit = 0 !british units

igas = 0 )perfect

displc = dltast(jprnt) )displacement thickness

now, write general info to file

write (2) nz,nnp,dstz,rey,resl,epsxr,drdx,rmil,thetal,de1995,

> retheta,rethm,prandtl,kodunit,igas

write (2) tel,amel,uel,xc

now test gortler number computations vs. emalik style

if (epsxr .It. 0.0) then

gortl = rey*sqrt(abs(epsxr))

gortth = gortl*(thetal/dstz)**l.5

else

gortl = 0.0

gortth = 0.0

end if

write (7,219) 12.0_z(jprnt),sl,radcurl,gortl,gortth

now, read the profile info:

and at the same time normalize

xscal = de1995*sqrt(resl)/sl !see maliks version of the harris code

escalÂ = (res1*amuel)/(rref*uref*sl*sqrt(2.0_xi(jprnt)))

> rmil*_jgeom !rref and uref added 8-30-91

phi = atan(drdx) !changed 9-8-94 sps

* yescal changes d/dytilde derivs to d/dy/ye derivs, see (15)

yescal = de1995/omega

if (nz .eq. ipro .or. nz .eq. 1) then

write (4,*) 'debug data for station nz= ',nz

write (4,*) 'resl,amuel,sl,xi=',resl,amuel,sl,xi(jprnt)

write (4,*) 'de1995,xscal,escall = ',de1995,xscal,escall

write (4,*) 'phi,yescal = ',phi,yescal
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write (4,*) 'rref,uref= ',rref,uref

end if

if (rmil .le. 0.0) then

write (*,*) 'bltostab debug: rmil= ',rmil

write (*,*) ' at nz= ',nz,' sl= ',sl,' z(jprnt)= ',z(jprnt)

write (*,*) ' rmi(jprnt)= ',rmi(jprnt),

> ' rrmi(jprnt)= ',rrmi(jprnt)

end if

do 400 j = 1,map

read (1,*) x(j),u(j),t(j),ul(j),tl(j) !really FZ and TZ, accept error

* followin E rescales eta derivs to y/ye derivs for malik code

* this next pair is from 23b in harris manual

t23b(j) = 1.0 + x(j)*ye(jprnt)*cos(phi)/rmil

* this next line derived from eqn 24b in manual, changes eta derivs to

y/ye derivs

etascal(j) = escall * t23b(j)**jgeom / t(j)

* the xscal factors in the follo,ing are to convert to malik code form

x(j) = x(j)*xscal !scalin E for malik code

ul(j) = yescal*etascal(j)*ul(j)/xscal

%l(j) = yescal*etascal(j)*tl(j)/xscal

400 continue

write (*,*) 'getting derivatives'

call scond(x,ul,u2,nnp) !get second derive from first

call scond(x,tl,t2,nnp)

* *change to use of utder as malik, adapted from maliks

* call utder(nnp,x,u,t,ul,u2,tl,t2)

* don't have derivs from harris for first point

* now, write the profile info

write (2) (x(j),j=l,nnp)

write (2) (u(j),
write (2) (ul(j)

write (2) (u2(j)

writs (2) (t(j),
write (2) (tl(j)

write (2) (t2(j)

* for checking

j=l ,nap)

,j=l ,map)

,j=l ,nnp)

j=l ,nnp)

,j=l ,map)

,j=l,nnp)

ultest = (u(2)-u(1))/(x(2)-x(1))

if (abs((ultest-ul(1))/ultest) .gt. eps) then

write (*,*) 'nz= ',nz,' ultest,ul(1)= ',ultest,ul(1)

write (*,*) 'problems with generation of u derivatives'

pause 'looks like fatal error'

end if

* change test specs due to profiles being so flat, adiabatic wall effects

nnptest = nnp/2.0

tltest = (t(nnptest)-t(nnptest-l))/(x(nnptest)-x(nnptest-l))

if (tltest .ne. 0.0) then

if ((abs((tltest-tl(nnptest))/tltest) .gt. 30*eps)

> .and. (abs(tltest-tl(nnptest)) .gt. small)) then
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write (*,*) 'nz= ',nz,' tltest,tl(nnptest)= ',

> tltest,tl(nnptest)

write (*,*) 'nnptest = ',nnptest

write (*,*) 'problems with generation of t derivatives'

pause 'looks like fatal error'

end if

end if

* for debug:

if (nz .eq. ipro .or. nz .eq. I) then

call scond(x,u,uldeb,nnp)

write (4,*) 'nz= ',nz,' , debug info'

write (4,*) 'de1995 (ye)= ',de1995

write (4,*)

> 'x,u,ul,uldeb,uxatio,t23b,etascal,u2,t,tl,t2= ',

> '(as written to bfl file)'

do 900 i = i,nnp

if (uldeb(i) .ne. 0.0) then

uratio = u1(i)/uideb(i)

else

uratio = 0.0 !arbitrary
end if

write(4,850) x(i),u(i),u1(i),uldeb(i),_atio,t23b(i),

> etascal(i),u2(i),t(i),tl(i),t2(i)

850 format(11(lx,e18.12))

900 continue

end if

I000 continue

close(unit=4)

close(unit=3)

stop

end

* this is a program taken from sivells to compute derivatives

* modified 7-13-90 to deal with errors in endpoint

SUBROUTINE SCOND (A,B,C,KING)

C TO OBTAIN PARABOLIC DERIVATIVE OF CURVE (UNEQUALLY SPACED POINTS)

* IMPLICIT REAL*8(A-B,O-Z)

DIMENSION A(*), B(*), C(*)

data eps/O.Ol/

N=KING-i

DO i K=2,N

c write (*,*) 'a(',k,')=',a(k)

S=A(K)-A(K-I)

T=A(K+I)-A(K)

1 C(K)=((B(K+X)-B(K))*S*S+(B(K)-B(K-I))*T*T)/(S*S*T+S*T*T)

SO=A(2)-A(i)

if (so .eq. 0.) then
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write (*,*) 'a(1,2=',a(1),a(2)

stop ' SCOWD: so=O'

end if

TO=A(3)-A(2)

if (to .eq. 0.) stop ' SCOND: to=O'
QO=SO+TO

C(1)=(-TO*(QO+SO)*B(1)+QO*QO*B(2)-SO*SO*B(3))/QO/SO/TO

* following added when got bad values near wall sps 7-90

clinear : (b(2)-b(1))/so

if (clinear .ne. 0.0) then

error = abs(c(1)-clinear)/clinear

else

if (c(1) .ne. 0.0) error = 1.0

end if

if (error .gt. eps) then

write (*,*) 'SCOND: problems with c(1) _

write (*,*) 'c(1),clinear= ',c(1),clinear

write (*,*) 'using clinear'

c(1) = clinear

end if

SF=A(KING-I)-A(KING-2)

TF=A(KING)-A(KING-1)

QF=SF+TF

QST=qF*SF*TF

C(KING)=(SF*(QF+TF)*B(KING)-QF*QF*B(KING-1)+TF*TF*B(KING-2))/QST

RETURN

END

The subroutines POLINT and LOCATE were obtained from Numerical

* Recipes by Press et. al., Ist edition.

* following routine is used by Frank Chen's differentiation

* code for getting curvatures from nozzle contour for Gortler work.

* this code put into the BLTOSTAB.FOR program sps 10-24-94

* From jerrypla@eagle.larc.nasa.gov Thu Oct 20 13:37 EST 1994

* Subject: NOS CSDS CODE

SUBROUTINE CSDS(MAX,IX,X,F,DF,S,IPT,COEF,NK,IERR)

C_

C* PURPOSE:

C*

C*

C*

C E3.1

C*

C* USE:

C*

SUBROUTINE CSDS FITS A SMOOTH CUBIC SPLINE TO A *

UNIVARIATE FUNCTION. DATA MAY BE UNEQUALLY SPACED. *

CALL CSDS(MAX,IX,X,F,DF,S,IPT,COEF,WK,IERR)

5O



C •

C*

C*

C*

C*

C*

C_

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

MAX

IX

X

F

DF

S

IPT

COEF

WK

IERR

INPUT INTEGER SPECIFYING THE NAXINUN NUMBER OF DATA *

POINTS FOR THE INDEPENDENT VARIABLE. *

INPUT INTEGER SPECIFYING THE ACTUAL NUMBER OF DATA

POINTS FOR THE INDEPENDENT VARIABLE. IX#MAX.

ONE-DIMENSIONAL INPUT ARRAY DINENSIONED AT LEAST

IX IN THE CALLING PROGRAM. UPON ENTRY TO CSDS,

X(I) MUST CONTAIN THE VALUE OF THE INDEPENDENT

VARIABLE AT POINT I.

ONE-DIMENSIONAL INPUT ARRAY DINENSIONED AT LEAST

IX IN THE CALLING PROGRAM. UPON ENTRY TO CSDS,

F(I) MUST CONTAIN THE VALUE OF THE FUNCTION AT

POINT X(I).

ONE-DIMENSIONAL INPUT ARRAY DIMENSIONED AT LEAST

IX IN THE CALLING PROGRAM. UPON ENTRY TO CSDS,

DF(I) MUST CONTAIN AN ESTIMATE OF THE STANDARD

DEVIATION OF F(I).

A NON-NEGATIVE INPUT PARAMETER WHICH CONTROLS THE

EXTENT OF SMOOTHING. S SHOULD BE IN THE RANGE

(IX-(2*IX)**.5)#S#(IX+(2*IX)**.5).

INPUT INITIALIZATION PARAMETER. THE USER MUST

SPECIFY IPT=-I WHENEVER A NEW X ARRAY IS

INPUT. THE ROUTINE WILL THEN CHECK TO INSURE THAT

THE X ARRAY IS IN STRICTLY INCREASING ORDER.

A TWO-DIMENSIONAL OUTPUT ARRAY DIMENSIONED (MAX,4)

IN THE CALLING PROGRAM. UPON RETURN, COEF(I,J)

CONTAINS THE J-TH COEFFICIENT OF THE SPLINE FOR

THE INTERVAL BEGINNING AT POINT X(I). THE

FUNCTIONAL VALUE OF THE SPLINE AT ABSCISSA Xl,

WHERE X(I) .LE. Xl .LE. X(I+1), IS GIVEN BY:

F(XI)=((COEF(I,4)*H+COEF(I,3))*B+COEF(I,2))*H

+COEF(I,I)

WHERE H=XI-X(I)

A ONE-DIMENSIONAL WORK AREA ARRAY DIMENSIONED AT

LEAST (7.IX+9) IN THE CALLING PROGRAM.

OUTPUT ERROR PARAMETER:

=0 NORMAL REI_JRN. NO ERROR DETECTED.

=J THE J-TH ELEMENT OF THE X ARRAY IS NOT IN

STRICTLY INCREASING ORDER.
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C* =-1 THERE ARE LESS THAN FOUR VALUES IN THE X ARRAY.*

C* *

C* UPON RETURN FROM CSDS, THIS PARANETER SHOULD BE *

C* TESTED IN THE CALLING PROGRAM. *

C* *

C* *

C* *

C* REOUIRED ROUTINES -NONE *

C* *

C* LANGUAGE -FORTRAN *

C* *

C* DATE RELEASED SEPTEMBER B, 1973 *

C* *

C* LATEST REVISION MARCH 1975 *

C

C

DIMENSION X(*),F(*),DF(*),COEF(NAX,*),WK(*)

SET UP WORKING AREAS

4

IERR=O

IF (IPT .NE. -i) GO TO B

IPT=O

IF( IX .LT. 4 ) GO TO 2

GO TO 3

IERR=-I

RETURN

IXI = IX-I

DO 4 I = I,IXI

IF ( X(I + 1) -X(I) .GT. 0 ) GO TO 4

IERR = I+I

RETURN

CONTINUE

NPI=IX +I

IB1 = NP1

IB2 = IBI+NPI

IB3 = IB2+NPI+I

IB4 = IB3+NPI

IB5 = IB4+NPI

IB6 = IBB+BPI+I

WK(1) = O.

WK(2) = O.

_H((IB2) = O.

WK(IB3) = 0.

IJK2 = IB2+NPI

WK(IJK2)=O.

IJK5 = IBB + I
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WK(IJK5)=O.

IJK5 = IBS + 2

WK(IJK5)=O.

WK(ISe) = O.

IJK5 = IB5+NPI

WK(IJK5)=O.

5 CONTINUE

P=O.

H=X(2)-X(1)

F2 = -S

FF=(F(2)-F(1))/H

IF (IX.LT.3) GO TO 25

DO 6 I=3,IX

G=H

H=X(I)-X(I-I)

E=FF

FF=(F(I)-F(I-I))/H

COEF(I-I,I)=FF-E

IJK3 = IB3+I

WK(IJK3)=(G+H)*.66666666666667

IJK4 = IB4+I

WK(IJK4)=H/3.

IJK2 = IB2+I

WK(IJK2)=DF(I-2)/G

WK(I)=DF(I)/H

IJKI = IBI+I

WE (IJKI) =-DF(I- I)/G-DF(I-I)/R

6 CONTINUE

DO 7 l=3,1X

IJKI=IBI+I

IJK2=IB2+I

COEF(I-I,2)=WK(1)*WK(1)+WK(IJKI)*WK(IJKI)+WK(IJK2)*WK(IJK2)

COEF(I-I,3)=WK(I)*WK(IJKI+t)+WK(IJKI)*WK(IJK2+I)

COEF(I-I,4)=WK(I)*WK(IJE2+2)

7 CONTINUE

NEXT ITERATION

10 IF

DO

(IX.LT.3) GO TO 25

IB I=3,IX

IJKI = IBI+I-I

IJKO = I-I

WK(IJKI)=FF* WK(IJKO)

IJK2 = IB2+I-2

IJKO = I-2

WK(IJK2)=G*WK(IJKO)

IJKO = I

IJK3 = IB3+I
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WI((IJKO):I./(P*COEF(I-I.2)+WK(IJK3)-FF,WK(IJK1)-G,WK(IJK2))

IJK5 = IB5+I

IJKN = IJKS-I

IJKO = IJKN-I

WK(IJK5):COEF(I-I.I)-WK(IJK1) • WK(IJKN)-WK(IJK2) *WK(IJKO)

IJK4 = IB4+I

FF=P* COEF(I-I.3)+WK(IJK4)-H* WK(IJK1)

G=H

H=COEF(I-I.4)* P

15 CONTINUE

DO 20 I=3.IX

J=IX-I+3

IJK5 = IBS+J

IJK6 = IJKS+I

IJK7 = IJK6+I

IJKI = IBI+J

IJK2 = IB2+J

WK(IJK5) = WK(J)*W'K(IJK5)-WK(IJKI)*WK(IJK6)-WK(IJK2)*WK(IJK7)

20 CONTINUE

25 E=O

H=O

COMPUTE U AND ACCUMULATE E

3O

DO 30 I=2,IX

G=N

IJK5 = IBS+I

H = (WK(IJK5+I)-WK(IJK5))/(X(I)-X(I-I))

IJK6 = IB6+I

WK(IJK6)=(R-G)* DF(I-I) * DF(I-1)

E=E+WK(IJK6)*(H-G)

CONTINUE

G=-H* DF(IX)* DF(IX)

IJK6 = IB6+NPI

WK(IJK6)=G

E = E-G*H

G=F2

F2=E*P*P

IF(F2.GE,S .OR. F2.LE.G) GO TO 45

FF=O.

IJK6 = IB6+2

H = (WK(IJK6+I)-WK(IJK6))/(X(2)-X(1))

IF (IX .LT. 3) GO TO 40

DO 35 I=3,IX

G=H

IJK6 = IB6+I

H = (WK(IJK6+I)-WK(IJKS))/(X(I)-X(I-1))

IJKI = IBI+I-I
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C

C

C

C

IJK2 = IB2+I-2

G = H-G-WK(IJK1)*WK(I-1)-WK(IJK2)*WK(I-2)

FF=FF +G * WK(I)*G

WK(I) = G

35 CONTINUE

40 H=E-P*FF

IF(H.LE.O) GO TO 45

UPDATE THE LAGRANGEMULTIPLIER P

FOR THE NEXT ITERATION

P=P+(S-F2)/((SQRT(S/E)+P)*H)

GO TO 10

IF E LESS THAN OR EQUAL TO S,

COMPUTE THE COEFFICIENTS AND RETURN.

45 DO 50 I=2,NPI

IJK6 = IB6+I

COEF(I-I,I)=F(I-I)-P*WK(IJK6)

IJKB = IBS+I

COEF(I-I,3)=WK(IJKS)

5O CONTINUE

DO 55 I=2,IX

H=X(I)-X(I-1)

COEF(I-1,4)=(COEF(I,3)-COEF(I-I,3))/(3. *H)

COEF(I-1,2)=(COEF(I,1)-COEF(I-I,1))/H -(H*COEF(I-1,4) + COEF

1 (I-1,3)) • H
55 CONTINUE

9005 RETURN

END
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